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Overview 
 Introduction to Nuclear Fusion
 Analysis Tools
 Fusion Processes (Fuel Cycles)
 Considerations for Implementations
 Implementation Types
 Fusion's Status and Future
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Fusion
 Nuclear fusion refers to any process of 

interaction of two nuclei in which they combine 
to form a heavier nucleus. 

 For light elements, this process typically emits 
extra particles such as electrons and neutrinos 
along with a relatively large amount of energy. 
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Fusion as a Power Source
 The goal of fusion power production is to 

harness reactions of this nature to produce 
electrical power. 

 Thermal power plants convert heat into 
electricity via a heat engine. 

 Direct conversion involves capturing charged 
particles to create a current.
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Net Energy
 We want net energy output from our fusion 

power plant.
 Later on we look at the details of the fusion 

energy gain factor Q, a useful quantity for 
describing the energy balance of a reactor.
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Steady State Power
 In order to be producing useful electrical power, 

the reaction must be either in dynamic 
equilibrium or pulsed quickly. 
– JET (1982-present) (Joint European Torus) 
– ITER (~2018) (originally International 

Thermonuclear Experimental Reactor)
– DEMO (~2033) (DEMOnstration Power Plant)
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Energy Capture

• Emitted energy from fusion reactions is 
primarily in the form of high energy neutrons 
and various charged particles.

• Charged particles skid to a halt mainly through 
electromagnetic interactions

• Neutrons deposit energy primarily through 
nuclear interactions.

• Stopping neutrons generally requires different 
shielding than charged particles.
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Safety Concerns
 The most popular fusion reactions produce a lot 

of neutron radiation.
 This fact has associated safety concerns:

– Direct Neutron Flux
– Activated Materials
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Our Focus
 Most of the scientific work in fusion has been 

focused on achieving net energy gain.
  Fusion for power production requires:

– Fusion process (fuel cycle)
– a technique for bringing the fuel to a state in 

which fusion can progress. (Implementation)
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Fusion Processes
 Fusion processes (or fuel cycles) are the 

possible fusion reactions.
 Analogous in concept and notation to chemical 

reactions
 An example of a fusion process, D-T:
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Fusion Techniques
 These are the different physical methods of 

achieving fusion conditions. 
– Require kinetic energy to overcome the 

Coulomb barrier. 
– Once the nuclei are close enough to each other, 

the strong nuclear force becomes stronger than 
the electrostatic force, and the nuclei may fuse.

 Some techniques we look at later include laser 
implosion and the tokamak.
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Analysis Tools
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Ignition State

• Ignition state occurs when enough fusion 
energy is kept in the plasma to continue fusing 
other nuclei. 

• The majority of energy leaves the plasma, 
becoming the energy that we capture to 
produce electricity.
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Lawson Criterion
 First described by John D. Lawson in 1957, it is 

a measure of the conditions required for 
achieving ignition in a plasma.
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Lawson Criterion

• The quantity L is defined as:
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Lawson Criterion

• For D-T:

Wikimedia Commons (Modified)
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Fusion Performance Parameter

• Product of  τE  with plasma pressure ρ.

• For D-T this must reach about 1MPa·s at a plasma 
temperature of 15keV.

Schumacher (2004)
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Energy Gain Factor
 Energy Gain Factor is often referred to as 'Q'
 Q is defined as: power from fusion divided by 

the power of external heating required to keep 
fusion going. 
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Energy Gain Factor Q
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Energy Gain Factor Q Calculation
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Fusion Processes
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Proton-Proton Chain
 Slow process in the sun for two reasons:

– overcoming coulomb barrier relies on quantum 
tunneling

– relies on weak interactions. 
 Dominant energy source in stars similar to or 

lighter than our sun.
 First reaction in the process:
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Proton-Proton Chain

HyperPhysics Online (2010)
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CNO Cycle

• CNO stands for Carbon-Nitrogen-Oxygen
• Four protons are converted into a helium-4 

nucleus, two positrons, gamma rays, and 
neutrinos.

• A heavy nucleus acts as a catalyst.
• The heavy nucleus is transformed in a cycle, 

but is not consumed in the cycle.
• Dominates in stars more than 1.5 times the 

solar mass.
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CNO Cycle

Wikimedia Commons
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Deuterium-Deuterium (D-D)

• Possibility for terrestrial use
• Reaction rate peak at 15 keV
• Deuterium available in the earth's oceans 
• Two processes with equal probability:
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Deuterium-Tritium (D-T)

• Properties that make it more desirable than D-D:
– Even higher cross section than D-D
– Reaction rate peak at 13.6 keV

• Disadvantages:
– Blanket of Lithium required for breeding tritium
– Neutron carries off 80% of energy
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Deuterium-3He (D-He)

• Advantages:
– Comparably high energy yield (18.3MeV)
– Aneutronic
– Direct conversion is possible

• Disadvantages:
– Helium-3 is hard to acquire currently
– Reaction rate peaks at 58 keV
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p-11B

• Advantages
– Aneutronic
– Direct conversion possible
– Fuel availability

• Disadvantages:
– Reaction rate peaks at a relatively high energy 

of 123 keV
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Muon Catalyzed Fusion

• Muon instead of an electron orbiting a nucleus 
has the effect of lowering the coulomb barrier.

• Lower temperatures. 
• Problem: Alpha sticking
• Need a cheap source of a very large number 

of Muons. 
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Considerations for Implementations
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Magnetic Pressure

• Temperatures are too high for material 
confinement.

• Charged particles tend to spiral around 
magnetic field lines. 

• Magnetic fields exert a pressure on the plasma 
to keep it contained. 
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Power Density

• Power Density varies as: 
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Direct Conversion

• Use graded positive potentials to slow down 
positively charged particles. 

• Kinetic energy is transformed into potential 
energy as they climb potential hills.

• Ions strike the target electrode, stealing 
electrons, creating a further positive potential. 

• Electrons are reflected to a different collection 
surface
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Direct Conversion

 Moir, R.W. (2009)
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Direct Conversion

 

 Moir, R.W. (2009)
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Materials

• Very high neutron flux for popular fuel cycles
• Using a divertor system, the energy flux may 

be tremendous 
– As high as 100MW per square meter. 
– No known material can handle this.
– Plan is to disperse the energy over wider area.
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Implementations
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Laser Implosion

• Also known as Inertial Confinement Fusion
• Pellet-based techniques have existed since 

the 70s
• High powered lasers are the key

– Difficulty of even laser pressure
– Efficiency of laser energy

• Ignition state may be possible

39



  

Laser Implosion
Laser Mégajoule

 

CEA – Laser Mégajoule Official Website (2010)
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Laser Implosion
National Ignition Facility

 Wikimedia commons (2010)
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Laser Implosion
Fast Ignition Systems

• Use laser implosion for pressure, but other 
techniques for heating
– Single ultra high power laser burst
– Z-pinch 

• Could dramatically lower the energy needed 
to achieve fusion conditions.
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Tokamak

• The name tokamak is a transliteration of a 
Russian acronym standing for a phrase similar 
to “toroidal chamber with magnetic coils”.

 Wikimedia commons (2010)
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Tokamak

• Poloidal magnetic field necessary.
• Electric current through the plasma to 

generate poloidal component.

 Wikimedia commons (2010)
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Tokamak: JET

 

JET Promotional Image (2010)
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Tokamak: ITER
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Inertial Electrostatic Confinement

• Inertial Electrostatic Confinement (IEC) uses 
electric confinement instead of magnetic. 

• Potential well created by an electrode at 
negative potential. 

• Ions are accelerated towards central 
electrode.
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Inertial Electrostatic Confinement
Fusor

 

 Wikimedia commons (2010)
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Inertial Electrostatic Confinement
Polywell

• Robert Bussard conducted extensive work on 
his own specialized version of IEC. 

• Instead of a physical electrode, they used a 
cloud of electrons contained by magnetic 
fields. 

• Very high energies attainable.
– Possibilities for aneutronic processes.
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Inertial Electrostatic Confinement
Polywell

• Ion Density varies as 1/R 2

• Power Density varies as 1/R4

• Well-deepening effect.
• New developments in 2009-2010: 

– Funding has been approved for new prototypes. 
(2010-2011)

– Provisional funding for later prototypes. (~2012)
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Fusion's Status and Future
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Nuclear Fusion: Status and Future

• There has been demonstrable, though difficult 
progress made in the last several decades.

• Our understanding of the difficulties has 
grown, making all previous estimations of 
fusion's possible timeline overly optimistic.

• Current projections are more humble, but 
there may still be things we do not know.

• Many exciting things happening in current 
experiments.

52



  

References
Bussard, R. W. Method And Apparatus For Controlling Charged Particles. 

United States Patent #4826646. 1985.

Maisonnier, D., et al. A Conceptual Study of Commercial Fusion Power Plants. 
European Fusion Development Agreement. 2005.

J.D. Lawson, Some Criteria for a Power Producing Thermonuclear Reactor. 
Atomic Energy Research Establishment, Harwell, Berks. 1956

Post, R. F., Fowler, T. K., Killeen, J., Mirin, A. A. Concept for a High-Power-
Density Mirror Fusion Reactor. Lawrence Livermore Laboratory, University of 
California, 1973.

Post, R. F. Controlled fusion research and high-temperature plasmas. Annual 
Review of Nuclear and Particle Science, 1970.

Ribe, F. L. Fusion Reactor Systems. Rev. Mod. Phys. 47, 7, 1975.

53



  

References #2
Keefe, D. Inertial Confinement Fusion Review. Ann. Rev. Nucl. Sci. 32, 391, 

1982.

Schumacher, U. Status and problems of fusion reactor development. 
Naturwissenschaften, 88, 3, 2004.

ITER and DEMO Projects Homepage: http://www.iter.org

54

http://www.iter.org/


  

D-D, D-T, and D-He

Wikimedia Commons
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Plasma Beta

• Beta is the ratio of plasma pressure and magnetic 
pressure.
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